Received 24 October 2005

Accepted 31 October 2005

Online 19 November 2005

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Feng-Ping Xiao, Fen-Fang Li, Long-Fei Jin* and Yong-Fei Wu

College of Chemistry, Central China Normal Univesity, Wuhan 430079, People's Republic of China

Correspondence e-mail: jlf163@public.wh.hb.cn

Key indicators

Single-crystal X-ray study T = 273 K Mean σ (C–C) = 0.004 Å R factor = 0.036 wR factor = 0.099 Data-to-parameter ratio = 16.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Methyl 5-bromosalicylate

In the title compound, $C_8H_7BrO_3$, an intramolecular hydrogen bond exists between the hydroxyl group and the O atom of the carbonyl group. The molecules are stacked along the *b* axis with weak π - π interactions.

Comment

Salicylate compounds display a broad range of biological activities (Yuan & Tsao, 1994) and useful properties (Liu *et al.*, 1996). As part of our ongoing studies (Jin & Xiao, 2005; Jin *et al.*, 2004) on activated esters and their complexes, the preparation and X-ray crystal structure determination of the title compound, (I), was undertaken. Bond lengths and angles in (I) show normal values (Jin & Xiao, 2005; Table 1). The non-H atoms of the molecule lie in a plane, with an r.m.s deviation of 0.009 Å. An intramolecular hydrogen bond is observed between the hydroxyl group and the O atom of the carbonyl group (Fig. 1 and Table 2). The molecules translated one unit cell along the *b*-axis direction are stacked with $C1\cdots C7^i$ and $C6\cdots C7^i$ [symmetry code (i): x, 1 + y, z] distances of 3.562 (4) Å and 3.599 (4) Å, respectively, indicating weak π - π interactions.

Experimental

Compound (I) was synthesized according to the literature procedure of Bartlett & Trachtenberg (1958). Single crystals suitable for X-ray diffraction were grown by slow evaporation of a methanol solution at room temperature.

Crystal data

C ₈ H ₇ BrO ₃	$D_x = 1.795 \text{ Mg m}^{-3}$
$M_r = 231.05$	Mo $K\alpha$ radiation
Monoclinic, $C2/c$	Cell parameters from 2046
a = 29.203 (7) Å	reflections
b = 4.0724 (10) Å	$\theta = 2.5-27.1^{\circ}$
c = 16.679 (4) Å	$\mu = 4.77 \text{ mm}^{-1}$
$\beta = 120.465 \ (3)^{\circ}$	T = 273 (2) K
V = 1709.7 (7) Å ³	Block, colourless
Z = 8	$0.65 \times 0.40 \times 0.22 \text{ mm}$

 $\ensuremath{\mathbb{C}}$ 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

organic papers

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.123, T_{\max} = 0.350$ 4772 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.099$ S = 1.061849 reflections 114 parameters H atoms treated by a mixture of independent and constrained refinement 1849 independent reflections 1511 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$ $\theta_{max} = 27.0^{\circ}$ $h = -36 \rightarrow 34$ $k = -4 \rightarrow 5$ $l = -21 \rightarrow 17$

$$\begin{split} w &= 1/[\sigma^2(F_{\rm o}^2) + (0.0603P)^2 \\ &+ 0.561P] \\ \text{where } P = (F_{\rm o}^2 + 2F_{\rm c}^2)/3 \\ (\Delta/\sigma)_{\rm max} = 0.001 \\ \Delta\rho_{\rm max} = 0.37 \text{ e } \text{\AA}^{-3} \\ \Delta\rho_{\rm min} = -0.67 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1

Selected geometric parameters (Å, °).

Br1-C5	1.890 (3)	C7-O2	1.213 (4)
C1-C7	1.479 (4)	C7-O3	1.328 (4
C2-O1	1.351 (4)	C8-O3	1.449 (4
$01 - C^2 - C^3$	117.5 (3)	02 - C7 - C1	123.7 (3)
O1-C2-C1	122.9 (3)	C7-O3-C8	116.2 (3
O2-C7-O3	123.6 (3)		

Table 2	
Hydrogen-bond geometry (Å, °).	

$O1-H1\cdots O2$ 0.93 (4) 1.78 (4) 2.617 (4) 149 (4)	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
	O1−H1···O2	0.93 (4)	1.78 (4)	2.617 (4)	149 (4)

The hydroxyl H atom was located in a difference Fourier map and refined isotropically [O-H = 0.93 (4) Å]. All other H atoms were included in the riding-model approximation, with C-H distances of 0.93 Å (aromatic H atoms) and 0.96 Å (methyl atoms). The isotropic displacement parameters were set equal to $1.2U_{eq}$ of the carrier atom for the aromatic and to $1.5U_{eq}$ of the carrier for methyl H atoms.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2001); software used to prepare material for publication: *SHELXTL*.

References

Bartlett, P. D. & Trachtenberg, E. N. (1958). J. Am. Chem. Soc. 80, 5808–5812.
Bruker (2001). SMART (Version 5.628), SAINT-Plus (Version 6.45) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.

Figure 1

The molecular structure of (I), showing 30% probability displacement ellipsoids. The dashed line indicates a hydrogen bond.

- Jin, L.-F. & Xiao, F.-P. (2005). Acta Cryst. E61, o1105-o1106.
- Jin, L.-F., Xiao, F.-P. & Wang, C.-G. (2004). Acta Cryst. E60, o1593-o1594.
- Liu, Y., Ma, S. Q. & Lu, C. Š. (1996). J. Beijing Medical Univ. 28, 13.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Yuan, Y. B. & Tsao, T. H. (1994). Chinese Bull. Botany. 11, 1-9.